Climate Modeling to Support Urban Water Management in the Wasatch Range

Court Strong

University of Utah, Department of Atmospheric Sciences

Steve Burian and Christine Pomeroy

University of Utah, Department of Civil and Environmental Engineering
Presentation Overview

Objective
Describe cyberinfrastructure research activities linking climate and urban water management

Outline
• Background
 – The CI-WATER project
 – Wasatch Range precipitation and urban water management
• Regional modeling using WRF
 – Model configuration
 – Historical validation for water year 2008
• Future research plans
• Summary
CI-WATER Project

Goal is to provide and use these tools to enhance the capacity for water resource planning and management in the Utah-Wyoming region.
CI-WATER – UU Goals

1. Climate variability including extremes

2. Climate-urban-water cyberinfrastructure

3. Design, operation, and risk of urban water infrastructure

Environmental Response: Changes to Water Cycle Processes, Ecosystems, and Water Quality Processes
Climate-urban-water CI

• Probabilistic framework
 – Manage massive urban watershed input data sets
 – Execute hundreds of thousands of simulations
 – Store and post-process terabytes of data

• Climate uncertainty
 – Account for different greenhouse gas scenarios
 – Account for different model biases
 – Develop terabytes of boundary conditions and initial conditions that will be used to constrain our hydroclimate projections.
Importance of initial conditions

- The Large Ensemble Project
 - One model: CCSM3 (T42)
 - One forcing: A1B 2000-2061
 - 40 simulations

Trends in precipitation [% per 55 years] expressed as a percentage of the model’s ensemble-mean climatology for 2005-2060.
Wasatch Range Precipitation

Mountain versus valley floor annual cycles

[Map and graphs showing precipitation data for Alta and KSLC over months]

[Graph showing orographic ratio over months]
Wasatch Range Precipitation

Lake effect snow

Alcott et al. (Submitted, *Mon. Wea. Rev.*)

Yeager et al. (Submitted, *J. Appl. Meteor. Clim.*)
Regional modeling: model configuration

• The Weather Research and Forecasting (WRF) regional weather and climate model Version 3.3.1 (Skamarock et al. 2005)

• Configured following Headwaters Project (Rasmussen et al. 2011):
 – Noah land surface model
 – Mellor–Yamada–Janjic planetary boundary layer scheme
 – Community Atmosphere Model’s (CAM) longwave and shortwave schemes
 – Thompson et al. (2008) cloud microphysics scheme

• Plus some customizations to account for Great Salt Lake
Regional modeling: model configuration

- Lambert conformal projection, three domains

Boundary conditions:
6-hourly NCEP Climate Forecast System Reanalysis (38-km resolution).
Water year 2007-2008
Regional modeling: model configuration

- Resolution of topography
Regional modeling: historical validation

\[\frac{\sum \text{WRF}}{\sum \text{Snotel}} = 1.003 \]

Precipitation (mm)
Regional modeling: historical validation

$\sum \frac{\text{WRF}}{\sum \text{snotel}} = 1.302$
250-mb geopotential height 2008

NCEP / NCAR Reanalysis
28 Jan 2008 12Z

mesowest.utah.edu
Summary and future research plans

- Additional historical runs
- Boundary force WRF with climate model projections
- Develop software to quickly generate future meteorological (precip., temp., etc.) scenarios
- Link climate simulation results to urban water systems models
- Analyze urban water system response to climate variability and the associated adaptation costs

http://www.hiddenwaters.org/

Court Strong, University of Utah
court.strong@utah.edu