Determination of Subsurface Soil Evaporation using a Heat Pulse Probe Array

Kashifa Rumana¹, Scott B. Jones¹, and Markus Tuller²

1) Dept. Plants, Soils, and Climate, Utah State University
2) Dept. Soil, Water, and Environmental Science, The University of Arizona

Introduction

Soil water evaporation is a critical component of both the surface energy balance and the hydrologic cycle, coupling heat and water transfer between land and the atmosphere. Recently introduced heat pulse probes (HPP) allow in-situ measurements of subsurface stage-2 soil water evaporation (Heitman et al., 2008a,b).

In the presented study, soil water evaporation was measured with an array of heat pulse probes embedded in a soil column.

Experimental Setup

Simple evaporation process from a saturated soil column.

Surface boundary conditions are influenced by continuous supply of heat and a uniform wind velocity over the surface.

Subsurface evaporation rates are calculated based on the sensible heat balance determined using the equation:

\[LE = \left(\frac{T_1 - T_{surf}}{x_1 - x_{surf}} \right) - \left(\frac{T_{surf} - T_2}{x_{surf} - x_2} \right) - \Delta S \]

- \(LE \): Subsurface evaporation rate (mm/s)
- \(L \): Volumetric latent heat of vaporization (kJ/m³)
- \(G \): Sensible heat flux of conduction
- \(S \): Soil Thermal Conductivity (W/m°C)
- \(T \): Soil temperature (°C)
- \(Z \): Soil depth (m)

The determined graph is distorted due to noise potentially due to averaging thermal conductivity across both sides of a heater needle.

- Discrepancies among 1, 3, and 6 mm observation results are largest for stage 2 evaporation.
- As the drying front deepens with time, these differences diminish.

Subsurface Evaporation Rate

HPP method (Heitman et al., 2008a,b)

\[LE = G_{1.2} - G_{1.2} - \Delta S \]

Energy Balance

\[LE = G_{2.3} - G_{3.2} - \Delta S \]

- \(G_{i.j} \): Heat flux (W/m²)
- \(\Delta S \): Sensible heat flux of conduction
- \(T \): Soil temperature (°C)
- \(x \): Depth (m)
- \(t \): Time (s)

Results and Discussion

Subsurface evaporation rates were calculated with Eq.(1) from soil temperatures with different observation grids (1.5 mm, 3 mm, 6 mm) using a Heat pulse probe array in a soil column.

Summary

- A PHPP provides estimates of soil thermal properties and heat flux.
- Subsurface evaporation estimates are derived from thermal property assessment with measurable depth dependent on number of PHPP in the array.
- A PHPP array experiment is underway to determine the level of accuracy for subsurface evaporation estimates.

Future Work

- A laboratory evaporation experiment using diurnal atmospheric boundary conditions is underway.
- The PHPP can be used as a multi-purpose research tool combining soil evaporation monitoring with estimates of soil water flux (e.g., from irrigation or precipitation).

References

Acknowledgements

The authors gratefully acknowledge support from the USDA Cooperative State Research, Education, and Extension Service supported by a Special Research Grant # 2008-34552-19042 and by a USDA-CSREES AFRI Soil Processes Program grant # 2009-65107-03835.