
ADHydro

A Large-Scale Multi-Physics Hydrology Simulation Implemented with 
Charm++



Goal:Upper Colorado Watershed 
on Yellowstone Supercomputer



Goal:Upper Colorado Watershed 
on Yellowstone Supercomputer
Area: 288,000 km^2
Streams: 467,000 km
Population: 900,000
Population using water: 
>30,000,000

Computation nodes: 4536
Processor cores: 72,576
Peak petaflops: 1.504
29th fastest in world (top500.org)



Collaborators



Simulation Attributes
Unstructured triangular mesh

Adaptive mesh geometry

Independent swappable physics modules, some are legacy codes

“Arbitrary” water management, irrigation and reservoir releases 
based on human decisions, not physics



Simulation Architecture

State Variables
surface water

depth

groundwater
head

mesh
geometry

vadose zone
state

Snowmelt

Infiltration

Rainfall

Evapo-
TranspirationSurface

Water

Channel
Network

Groundwater

Water
Management



Reasons for Using Charm++
Partitioning

Load Balancing

Checkpointing

Easy to overlap computation and communication



Reasons for Using Charm++
Doesn't require learning advanced features of C++

Domain experts are not computer scientists, they know C, not C++

Our code uses no inheritance, no polymorphism, no iterators, 
operator overloading only for PUP, and templates only for three small 
helper functions



Charm++ Implementation
Each mesh element is a chare object (~7,000,000 for entire upper 
Colorado watershed)

Entire mesh is an array of chare objects

State variable store implemented in member variables of chares

Each chare stores the water it has and caches some read-only 
information about its neighbors



Charm++ Implementation
Physics algorithms implemented/called in methods of chares and 
some SDAG code

Physics algorithms proceed by rounds of messages to exchange 
state information, then calculation, then rounds of messages to 
exchange flow information, then updating state.



Charm++ Performance
We have not yet performed rigorous performance measurement

From preliminary results scaling looks good

Running with only ~100 elements per PE we were still seeing 50% of 
linear speedup (i.e. 500 cores ran 250 times faster than one core)



Charm++ Debugging
We have not used the Charm debugger

Documentation says it only works with net implementations and we 
use mpi and have to use mpi for parallel I/O

We have been doing all of our debugging by running on a single PE 
and using gdb

That's been sufficient so far, but not ideal

It would be nice to watch messages being sent and received and 
inspect message queues


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

