

Team 1: Enhance Cyberinfrastructure Facilities Research Platform Hardware

Jeffery S. Horsburgh

3-4-2013

Utah EPSCoR Projects

- Inter-Campus an Intra-Campus Cyber Connectivity (RII C2)
 - Extending Campus Networks and the Research@UEN
 Optical Network
- CI-WATER (RII Track 2)
 - Cyberinfrastructure to advance high performance water resources modeling

- iUTAH (RII Track 1)
 - innovative Urban Transitions and Aridregion Hydrosustainability

CI-WATER Proposed Hardware

- Production deployment environment for hosting databases, web services, and web applications (UofU)
- Development and staging environments at BYU and USU to serve as a research platform
- Large scale storage to support HPC and backup of databases and services created

How can we create a research hardware platform that supports diverse cyberinfrastructure needs of CI-WATER?

CI-WATER Software CI Development Approach

- Where possible, leverage and adopt existing cyberinfrastructure components
- Collaborate with other CI development activities to get needed functionality
- Develop pieces that we need

Required Functionality

- Research platform (CI-WATER EPSCoR)
 - Development, prototyping, and testing of servers, software applications, and services on multiple platforms (e.g., Windows, Linux)
 - Host machines allocated for modeling, analysis, and computational tasks
- Production data service and application hosting platform (iUTAH EPSCoR)
 - Web servers
 - Data web services
 - Web applications
 - Database servers
 - Map servers
 - File servers
 - Data harvesters and automated data processing applications

Virtual Server Architecture

VMWare Virtual Machines

Required servers and software stacks implemented on virtual machines

Many virtual machines can be hosted on a single virtual host server

Tiered storage

Tier 1 and 2: Databases and operating systems

Tier 3: Lower demand file storage and acces

Capabilities

- Quickly spin up virtual machines that implement different operating systems and platforms (e.g., Windows, Linux)
- Use shared computational and storage resources rather than requiring a physical machine for each purpose
- Create and manage both development and production servers using shared hardware
- Hot-swap virtual machines across physical host machines using virtualization software
 - Ensure failover for production virtual servers
 - Efficiently allocate unused resources to computationally intensive modeling or analysis tasks

Initial Specifications

- 3 virtual host servers using shared storage arrays
 - Dual 8 core processors
 - 128 GB RAM
- 7.2 TB high performance shared storage array
 - Virtual machine operating systems
 - Relational databases
- 72 TB high capacity shared storage array
 - File storage
 - Archival
- Integrated with USU Central IT VMWare infrastructure and enterprise data center

Available storage will be expanded in subsequent years via iUTAH

The Larger Utah EPSCoR Cyberinfrastructure Picture

